
ALGORITHMIC ADVANCES FOR SOFTWARE RADIOS

Matteo Frigo (Vanu Inc., One Porter Sq., Cambridge, MA 02140,athena@vanu.com)

ABSTRACT

We present two algorithms: a novel demodulator for Com-
plementary Code Keying (CCK), and a “lazy” variant of the
Viterbi algorithm. These algorithms are more suited to soft-
ware implementations than existing algorithms for the same
problems. The new algorithms are noise-adaptive: their run-
ning time is not constant, but instead it depends on the noise
conditions. We argue that this property is desirable for soft-
ware radios.

1. INTRODUCTION

Algorithms that are appropriate for hardware radio imple-
mentations are not necessarily the most adequate solution for
a software radio. Roughly speaking, hardware offers a large
degree of parallelism, but it is constrained by a fixed data
flow. On the other hand, software must use a small set of
CPU resources, but it can decide at runtime which strategy to
process the input signal is best. Because of these differences,
many algorithms that were designed with hardware imple-
mentations in mind need to be reconsidered from a software-
radio perspective.

This paper details some recent progress made by Vanu Inc.
in developing algorithms for software radios. Specifically, we
discuss two algorithms: a novel demodulator [4] for the Com-
plementary Code Keying (CCK) modulation scheme [12]
used in IEEE 802.11b, and thelazy Viterbi decoder[3], a
maximum-likelihood decoder for convolutional codes that is
meant to replace the celebrated Viterbi algorithm [14, 6] in
our software-radio systems.

These two algorithms share the following feature: Their
running time is not constant, but it depends on the signal-to-
noise ratio (SNR) of the input signal. The lower the noise,
the faster the algorithm. While this property may be inappro-
priate for hardware designs, it is advantageous for software.
First, under good noise conditions, a noise-adaptive algorithm
saves CPU cycles, therefore reducing power consumption and
prolonging battery life. Second, even at the minimum toler-
able SNR level, a noise-adaptive algorithm may still be sub-
stantially faster than an algorithm designed for the worst case.
For example, no need exists to use an algorithm that works
well at 0 dB if the system is meant to work only at SNR
greater than 5 dB.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-4 -2 0 2 4 6 8 10

R
un

ni
ng

 ti
m

e
(H

yb
rid

) /
 R

un
ni

ng
 T

im
e

(F
H

T)

Signal-to-Noise Ratio (dB)

Figure 1: Running time of Hybrid CCK decoding algorithm as a
function of SNR for CCK Demodulation. Running time is given
as a fraction of the running time for the FHT maximum-likelihood
decoder [12].

To illustrate the benefits of noise-adaptivity, consider the
Complementary Code Keying (CCK) modulation scheme
used in the IEEE 802.11b wireless LAN standard. The
maximum-likelihood CCK demodulator from [12] employs
an algorithm based on the fast Hadamard transform (FHT).
In order to produce 8 bits of output, the demodulator requires
about500 arithmetic operations, which amounts to687.5·106

operations per second at the standard data rate of 11 Mbps.
Even without counting the overhead of loops, function call,
pipeline stalls, and register spills, this computational load is
onerous for a software implementation on current CPUs. Our
best implementation of the CCK demodulator requires about
1375 ·106 cycles to process one second of data on a relatively
state-of-the-art Athlon XP processor. On the other hand, un-
der good noise conditions, our “Hybrid” demodulation algo-
rithm runs about 4 times faster than the algorithm from [12].
Figure 1 shows the running time of the Hybrid CCK demodu-
lator as a function of the SNR of the input signal. (The Hybrid
algorithm is not maximum-likelihood, but the loss of optimal-
ity is negligible. See Figure 2.)

In the remainder of this paper, we discuss the new algo-
rithms in detail. Section 2 discusses our new CCK demodu-
lator, and Section 3 discusses our convolutional decoder.

2. A NOVEL CCK DEMODULATOR

The IEEE 802.11b standard for wireless local area networks
has high data rates in order to operate at speeds compara-
ble to Ethernet. Complementary Code Keying (CCK) was
adopted by the IEEE as the modulation scheme to achieve
this data rate [12]. In this section, we detail the Hybrid algo-
rithm for CCK decoding, and give experimental results that
show a significant improvement in running time with only a
negligible loss in error rate. This algorithm is a special case
of a more general decoder for first-order Reed-Muller codes
that we have published in [4]. The same paper [4] also proves
analytical bounds on the error rate of the Hybrid algorithm.

In CCK modulation, an information sequence
(c0, c1, c2, c3) is a block of four symbols, where
ci ∈ {0, 1, 2, 3}. These symbols are modulated using
QPSK to valuesφi = ωci , whereω = eπj/2 = j =

√
−1,

and encoded into eight complex numbers(y0, . . . , y7) using
the following encoding function:

y0 = φ0 y1 = −φ0φ1 (1)

y2 = φ0φ2 y3 = φ0φ1φ2

y4 = −φ0φ3 y5 = φ0φ1φ3

y6 = φ0φ2φ3 y7 = φ0φ1φ2φ3

These eight symbols are then subject to a noisy channel. We
use(r0, . . . , r7) to denote the noisy symbols received at the
other end of the channel. We haveri = yi + Ni, whereNi
denotes the noise. Based on the received vectorr, the decoder
must output hard estimatesĉi of the information symbolsci,
wherei ∈ {0, 1, 2, 3}.

2.1. Majority-logic decoding

Consider first the case where there is no noise in the channel,
i.e.,Ni = 0, so thatri = yi for all i. The decoding problem
is now easy. For example, consider the expression−r1r

∗
0 . If

there is no noise in the channel, then−r1r
∗
0 = −y1y

∗
0 = φ1.

Similarly, −r∗4r6 = −y4y6 = φ2, andr7r
∗
3 = y7y

∗
3 = φ3.

Therefore, when there is no noise in channel, we can simply
“read off” φ1, φ2 andφ3 using simple arithmetic operations
between certain received symbols.

In reality, these computations will be corrupted by noise,
and will not always yield the correct answer. For example,
we have−r1r

∗
0 = (−y1 + N1)(y0 + N0)∗. In expectation,

however, we still have−r1r
∗
0 = φ1, and if the noise is low,

then−r1r
∗
0 is a good approximation toφ1.

The principle behind majority logic decoding is to use sim-
ple computations on the received bits to produce “votes” for
the value of each information symbol. In hard decision ma-
jority logic, the value that receives the most votes becomes
the decoded information symbol. In soft decision majority

logic, the votes are “soft” values, and they are averaged to
form a “soft estimate” for each information symbol. Ideally,
these votes should involve as many code bits as possible so
that local noise cannot drastically affect our estimate.

In CCK, we use(φ̂1, φ̂2, φ̂3) to denote the soft estimates
for φ1, φ2, φ3 (we will cover the special case ofφ0 in Sec-
tion 2.2), and compute each of them based on four votes as
follows:

φ̂1 = (−r1r
∗
0 + r3r

∗
2−r∗4r5 + r7r

∗
6) / 4

φ̂2 = (r2r
∗
0 − r∗1r3−r∗4r6 + r7r

∗
5) / 4

φ̂3 = (−r4r
∗
0 − r∗1r5+r6r

∗
2 + r7r

∗
3) / 4

Ideally, if φ̂i is a good estimate ofφi, then|φi − φ̂i| should
be small. The majority logic decoders of Paterson and
Jones [11], and Van Nee [13] commit to a hard decisionĉi for
each information symbolci, based on̂φi. By a hard decision
based on̂φi, we mean that̂ci = arg minc∈{0,1,2,3}|ωc − φ̂i|.

2.2. Switching to an optimal algorithm

Our Hybrid algorithm first computes the valueŝci, i ∈
{1, 2, 3}, as in majority logic. However, before committing
to the hard estimateŝci, the Hybrid algorithm checks how
close the hard estimates are to their soft counterparts. To
this end, we establish a global “sensitivity” parameterθ. If
| arg(φ̂i) − arg(ωĉi)| > θ, for somei ∈ {1, 2, 3}, we dis-
card all the estimateŝci, and revert to the optimal FHT de-
coder for the entire block; otherwise, we commit to the hard
estimateŝci. Since in practice the channel amplifies the sig-
nal by some unknown gain, we choose to use the difference
in phase as a reliability measure instead of the difference in
magnitude.

We now address how compute the estimateĉ0, once we
have committed to(ĉ1, ĉ2, ĉ3). We setφi = ωĉi , for all i ∈
{1, 2, 3}, and then use the equations in (1) to compute eight
votes forφ0. Specifically, we set̂φ0 = 1

8 (r0 − r1φ
∗
1 +

r2φ
∗
2 + r3φ

∗
1φ
∗
2 − r4φ

∗
3 + r5φ

∗
1φ
∗
3 + r6φ

∗
2φ
∗
3 + r7φ

∗
1φ
∗
2φ
∗
3),

and make a hard decision̂c0 based on̂φ0. Otherwise, if we
are not confident in the estimatesĉi, we throw them out and
revert to the optimal FHT decoder for this block.

2.3. Experimental results

We ran our Hybrid algorithm against an optimized version of
the FHT decoder for SNR from -5 to 10, and measured the
running time and block error rate of both at each SNR. By
block error rate, we mean the number of blocks in which at
least one of the fourφ’s is decoded incorrectly over the total
number of blocks. We used a value ofθ such thattan θ =
2/3. This offered the best trade-off between running time
and error correcting ability, since comparing to the ratio2/3

0

0.1

0.2

-4 -2 0 2 4 6 8 10

Er
ro

r R
at

e(
H

yb
rid

) /
 E

rr
or

 R
at

e(
FH

T)
 (d

B
)

�

Signal-to-Noise Ratio (dB)

Figure 2: Loss in block error rate of the majority logic and Hybrid
algorithms vs. optimal algorithm as a function of SNR. The y-axis is
Ea/Eo in dB, whereEa is the block error rate of the plotted algo-
rithm, andEo is the block error rate of the optimal FHT algorithm.

is computationally simple. All experiments were performed
on 1 billion encoded blocks of data subject to a simulated
AWGN channel with varying SNR. All algorithms ran on a
Pentium III 1 GHz processor.

When the SNR is high, the Hybrid algorithm runs approx-
imately four times faster than the FHT decoder. As the SNR
decreases, the frequency with which the Hybrid algorithm
switches to the slower FHT decoder increases, and thus the
running time increases. Figure 1 shows this relationship in
detail. We remark that the Hybrid algorithm is always faster
than the FHT decoder, regardless of the noise level.

The error performance of the Hybrid algorithm is near-
optimal. Figure 2 shows the block error rate as a function
of SNR of the Hybrid algorithm and the majority logic algo-
rithm (without switching), as compared to the optimal FHT
algorithm. Here we see that the majority logic algorithm can
perform a full2.4 dB worse than FHT, whereas the Hybrid al-
gorithm is never more than.2 dB worse, making it quite close
to an optimal decoder.

3. A FAST MAXIMUM-LIKELIHOOD DECODER
FOR CONVOLUTIONAL CODES

In this section, we describe thelazy Viterbi decoderfor con-
volutional codes.

Maximum-likelihood (ML) decoding of convolutional
codes is often implemented by means of the Viterbi algo-
rithm [14, 6, 5]. The main drawback of the Viterbi decoder is
execution time. To decode a single binary information sym-
bol, the decoder performsO(2k) operations, wherek is the
size of the internal memory of the encoder (k + 1 is often
referred to as theconstraint lengthof the code). This expo-
nential dependence onk makes a software implementation of

Algorithm Best case Worst case
Viterbi Θ(2k) Θ(2k)
A∗ Θ(logL) Θ(2k log(L2k))
Lazy Viterbi Θ(1) Θ(2k)

Figure 3: Asymptotic running time of three decoders in the best and
worst cases. In the formulas,k + 1 is the constraint length of the
code, andL is the length of the block.

the algorithm inefficient for many codes of interest, such as
the one used in the IS-95 CDMA standard for whichk = 8.
To overcome this problem, other decoder structures, namely
sequential decoders [2] andA∗ search [1], have been inves-
tigated in the literature. Under good Signal-to-Noise Ratio
(SNR) conditions, sequential decoders are more efficient than
the Viterbi algorithm, but, in addition to being suboptimal,
they become prohibitively slow at low SNR [2]. TheA∗ de-
coder combines the reliability and performance of the Viterbi
algorithm while running as efficiently as a sequential decoder
when the SNR is high. However, previous descriptions ofA∗

decoders do not apply to continuous streams of data, and they
do not address certain implementation problems that are crit-
ical to the practicality of the algorithm. Specifically, under
high noise conditions the implementations detailed in the lit-
erature lead to a running time asymptotically even worse than
Viterbi’s.

In our research, we have extended theA∗ approach to ap-
ply to continuous streams of data, and we have solved the im-
plementation problems. Specifically, ourlazy Viterbi decoder
offers (i) maximum-likelihood decoding, (ii) best-case run-
ning time much better than the Viterbi algorithm, (iii) worst-
case asymptotic running time no worse than the Viterbi algo-
rithm, and (iv) simple data structures that allow for an ef-
ficient software implementation. Figure 3 summarizes the
asymptotic complexity of the best and worst cases of the three
algorithms.

Maximum-likelihood decoding of convolutional codes is
equivalent to the computation of a shortest path on a partic-
ular directed graph called atrellis. A trellis node is labeled
with a pair(s, t), wheres represents the state of the encoder
at timet. An edge(s, t)→ (s′, t+ 1) in the trellis represents
the transition of the encoder at timet from state(s, t) to state
(s′, t + 1). Each edge(s, t) → (s′, t + 1) in the trellis is
labeled with a nonnegativebranch metricd, which measures
the likelihood that the encoder moves into states′ at timet+1
given that the encoder is in states at timet and given the re-
ceived symbol at timet. The branch metrics can be defined
in such a way that the sum of the branch metrics on a path is
a measure of the likelihood of that path.

A trellis contains a distinguishedstart nodeat time0. The
accumulated metricof a node is the distance of the node from

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 2 4 6 8 10

B
it

Er
ro

r R
at

e

�

Signal-to-Noise Ratio Es/No (dB)

Viterbi/Lazy
 Decoder

Sequential Decoder

100

101

102

103

-2 0 2 4 6 8

A
vg

. t
re

lli
s

no
de

s
ex

pa
nd

ed
 p

er
 o

ut
pu

t b
it

�

Signal-to-Noise Ratio Es/No (dB)

Viterbi decoder

Lazy decoder

Sequential decoder

Figure 4: (Top) Bit error rate; (Bottom) Average number of ex-
plored nodes per information symbol. Both are given as a function of
the SNR, for the Lethargic Viterbi, Viterbi and Sequential decoders,
under AWGN. The code is a rate-1/2, constraint length9 code used
in CDMA, generator polynomials (753,541) (octal). For the sequen-
tial decoder, experiments were performed on blocks of 100 encoded
information bits.

the start node. The goal of the decoder is to identify, for each
time stept, the node at timet with the smallest accumulated
metric.

Both the Viterbi and theA∗ algorithm maintain an upper
bound to the accumulated metric of all nodes. The basic oper-
ation is theexpansionof a node: Once the accumulated metric
of a nodeu is known, the upper bound of all its successors is
updated. The Viterbi algorithm expands nodes breadth-first,
and it expands the whole trellis no matter what the noise con-
ditions are. TheA∗ algorithm always greedily expands the
node with the lowest accumulated metric.

Figure 4 shows the number of expansions performed by
both strategies as a function of the SNR. At high SNR, theA∗

algorithm performs far fewer expansions than the Viterbi al-
gorithm. However, it is wrong to conclude thatA∗ is uncondi-
tionally better than Viterbi, because in practice, expansion is
much cheaper computationally for the Viterbi algorithm than
it is for theA∗ algorithm. The Viterbi algorithm expands ev-
ery node of the trellis, and consequently it does not incur the
overhead of keeping track of which nodes to expand. More-

over, for Viterbi the order of expansion is known at compile
time, which allows for optimizations such as constant fold-
ing of memory addresses, efficient pipelining, and elimina-
tion of most conditional branches. In contrast, theA∗ algo-
rithm maintains a priority queue of nodes, keyed by accu-
mulated metric. Such a priority queue slows down practical
implementations of theA∗ algorithm because of two reasons.
First, for a trellis withn nodes, insertion, deletion and up-
date in a general priority queue requiresΘ(logn) operations,
which is asymptotically worse than theΘ(1) time per expan-
sion of Viterbi. Second, a general priority queue using heaps
or some kind of pointer-based data structure is not amenable
to the compile-time optimizations that apply to Viterbi.

Our goal with the lazy Viterbi decoder is to make theA∗

approach useful in practice. By exploiting the structural prop-
erties of the trellis, we can perform all priority-queue opera-
tions in constant time, thereby eliminating theΘ(logn) slow-
down. A careful design of the data structures maintained by
the lazy Viterbi decoder allows us to implement the whole
expansion operation in constant time, and furthermore, as a
short sequence of straight-line code, which is important for
efficient pipelining on present-day processors.

3.1. Speed of the lazy Viterbi decoder

In this section, we report on the running time of the lazy de-
coder on four different processors, and we compare our de-
coder with optimized implementations of the Viterbi algo-
rithm.

Figure 5 supports our claim that the lazy Viterbi decoder is
a practical algorithm. We compared the lazy decoder with the
Viterbi decoder written by Phil Karn [8] and with our own op-
timized implementation of Viterbi. The “unoptimized Karn”
decoder works for all constraint lengths and for all polyno-
mials. Karn also provides an optimized decoder which is
specialized for constraint length 7 and for the “NASA” poly-
nomials0x6d, 0x4f. This optimized code unrolls the inner
loop completely, and precomputes most memory addresses at
compile time. Because Karn’s optimized decoder only works
for constraint length 7, we programmed our own optimized
Viterbi decoder that works for constraint lengths up to 6. This
program is labeled “optimized Viterbi” in the figure.

Karn [9] also has an implementation that uses SSE instruc-
tions on the IA32 architecture. These instructions operate on
eight array elements at the same time. Karn’s SSE imple-
mentation is a great hack, as it expands one node in slightly
more than one machine cycle, but it only works for constraint
lengths 7 and 9. As can be seen in the table, even the eight-
fold gain in processing power is not sufficient to beat the lazy
decoder for constraint length 9. Moreover, SSE instructions
do not apply to the PowerPC processor or the StrongARM.
(The PowerPC 7400 processor implements instructions simi-

Decoder Constraint Athlon XP Pentium III PowerPC 7400 StrongARM
length cycles/bit cycles/bit cycles/bit cycles/bit

Lazy 6 193 201 200 226
Viterbi Optimized 6 275 316 239 310
Karn Unoptimized 6 1041 1143 626 892
Lazy 7 198 205 203 232
Karn Optimized 7 530 558 486 641
Karn Unoptimized 7 1806 2108 1094 1535
Karn SSE 7 107 108 N/A N/A
Lazy 9 217 235 225 343
Karn Unoptimized 9 6300 8026 3930 5561
Karn SSE 9 307 310 N/A N/A

Figure 5: Running time of various convolutional stream decoders under high SNR conditions. Times are expressed in cycles per decoded bit.
Code for constraint length 6: TIA/EIA-136 code, polynomials0x2b, 0x3d. Constraint length 7: “NASA” code0x6d, 0x4f. Constraint length
9: IS-95 code0x1af, 0x11d. Processors: 1466 MHz Athlon XP 1700+, 600 MHz Intel Pentium III, 533 MHz PowerPC 7400, 200 MHz
StrongARM 110. All programs compiled withgcc-2.95 -O2 -fomit-frame-pointer and the most appropriate CPU flags.

lar to SSE, but no implementation was available that exploits
them.)

The running times in the figure refer to the case of high
SNR, where the lazy decoder performs a minimum number of
node expansions. This is the most favorable case for the lazy
decoder. Our focus on the best case is legitimate because, as
can be seen in Figure 4, the lazy decoder operates in the best-
case scenario as long as the SNR is at least 5–6 dB, which is
a reasonable assumption in practice.

3.2. Description of the lazy Viterbi decoder

The lazy decoder maintains two main data structures, called
the trellis and the priority queue. The trellis data structure
contains the nodes of the trellis graph whose shortest path
from the start node has been computed. Each nodeu in the
trellis data structure holds a pointerPrev(u) to its predeces-
sor on the shortest path. We maintain the invariant that every
node in the trellis has been expanded.

The priority queue contains a set ofshadow nodes. A
shadow nodêu is a proposal to extend a path in the trellis data
structure by one step to a new nodeu. Each shadow nodêu in
the priority queue holds an accumulated metricacc(û) equal
to the length of the proposed path extension, and a pointer
Prev(û) to the predecessor ofu on that path. Nodeŝu in the
queue are keyed byacc(û).

We note thatacc(û) is not stored explicitly at̂u, but rather
is implicitly stored by the data structure, a detail we will cover
later. The predecessorPrev(û) of a shadow node is always
a “real” node in the trellis data structure. All nodes in both
the priority queue and the trellis also hold their time and state
value.

Initially, the trellis is empty and the queue consists of a

shadowŝ of the start nodes with acc(ŝ) = 0. After initial-
ization, the algorithm repeatedly extracts a shadow nodeû of
minimum metricm from the priority queue. Such a shadow
node thus represents the best proposed extension of the trellis.
If u, the “real” version of̂uwith the same time and state, is al-
ready in the trellis, then̂u is discarded, since a better proposal
for u was already accepted. Otherwise, the algorithm inserts
a new nodeu into the trellis withPrev(u) = Prev(û), and,
for each successorv of u, v̂ is inserted in the priority queue
with metricacc(v̂) = m + d(u, v). This process is repeated
until the trellis contains a node at timeT .

Unlike theA∗ algorithm, in our decoder a node can be
both in the trellis and as a shadow in the priority queue; in
fact, more than one shadow of the same node can be in the
priority queue at the same time. This is one of the “lazy” fea-
tures of the algorithm: Instead of demanding that all nodes
be uniquely stored in the system, we trade a test for priority-
queue membership for a delayed test for trellis membership.
This choice is advantageous because the check can be avoided
altogether if a shadow node is still in the priority queue when
the algorithm terminates. Moreover, trellis membership is
easier to test than priority-queue membership, as will be clear
after we detail the implementation of both data structures be-
low.

Implementation of the trellis. The trellis data structure is
a sparse matrix. It is sparse because in practice only a small
fraction of the trellis nodes are actually expanded (see Fig-
ure 4). It is a matrix because the two indicess andt belong
to an interval of integers. Many sparse-matrix representations
(including a dense matrix) could be used to represent the trel-
lis. We found it convenient to implement the trellis as a hash
table, where the pair(s, t) is the hash key. Using standard

techniques, trellis lookup and insertion can be implemented
in expected constant time. In alternative, the “sparse array
trick” [10, Section 2.2.6, Problem 24] could be employed for
a deterministicO(1) implementation of the trellis.

Implementation of the priority queue The priority queue
supports two main operations: insertion of a node, and ex-
traction of a node of minimum metric. In this section, we
give a careful examination of the range of accumulated metric
values taken on by shadow nodes in the priority queue. Our
insights lead to an implementation that allows both insertion
and extraction in constant time.

We begin by making the following assumption:Branch
metrics are integers in the range[0..M], for some integerM
independent of the constraint length. This assumption holds
for hard-decision decoders, where the branch metric is the
Hamming distance between the received symbol and the sym-
bol that should have been transmitted. For soft-decision de-
coding, this assumption requires quantization of the branch
metrics. It is known [7] that quantization to 8 levels is usually
sufficient to achieve most of the coding gains, and therefore
this assumption is not restrictive.

This assumption implies the following property, proven
in [3]: At any time during the execution of the lazy de-
coder, all metrics in the priority queue are in the range
[m..(m+M)], wherem is the minimum metric in the queue.
Because of this property, we implement the priority queue as
an array[m..m + M] of linked lists of nodes. The metric of
a node is not stored in the node, but it is implicitly given by
which list the node belongs to. The array can be implemented
as a circular buffer ofM + 1 pointers. Alternatively, one can
maintain the invariant thatm = 0 by periodically adjusting
all metrics when the invariant is violated. (This is a simple
O(M) operation that only involves a shift of the array.) In
either implementation, insertion of a new node and extraction
of a minimal-metric node are constant-time operations.

Stream decoding The lazy Viterbi decoder is easily
adapted to process an infinite stream of data. Fix atraceback
lengthL ≈ 5.8k as in [5]. At timeT , the decoder processes a
new symbol, and expands until the trellis data structure con-
tains a nodeu at timeT . It then outputs its best estimate of
the information bit at timeT − L by means of a traceback
process [15, Section 12.4.6]. The traceback starts at the node
u, and follows a path back (using thePred() pointers) until it
reaches a node at timeT −L. It then outputs the information
bit(s) associated with the first transition on the path.

After this procedure, all nodes at timeT −L are no longer
needed, and the memory that they occupy must be reclaimed.
Specifically, we must delete all the nodes from the trellis, and
all the shadow nodes from the priority queue, whose time is

equal toT − L. To this extent, we maintain a linked list of
all nodes and shadow nodes at timet. We maintain an array
of pointers into suchtime listsindexed by time. Since only
lists in the ranget ∈ [T − L, T] are nonempty, this array can
be managed as a circular buffer of lengthL + 1. After the
traceback, we walk down the time list forT − L, deleting
every node (or shadow node) along the way.

REFERENCES

[1] L. Ekroot and S. Dolinar.A∗ decoding of block codes.IEEE
Trans. Comm., 44(9):1052–1056, 1996.

[2] R. M. Fano. A heuristic discussion of probabilistic decoding.
IEEE Transactions on Information Theory, IT-9:64–73, 1963.

[3] Jon Feldman, Matteo Frigo, and Ibrahim Abou-Faycal. A fast
maximum-likelihood decoder for convolutional codes. InPro-
ceedings of the IEEE Semiannual Vehicular Technology Con-
ference, Fall 2002. To appear.

[4] Jon Feldman, Matteo Frigo, and Ibrahim Abou-Faycal. A
noise-adaptive strategy for first-order Reed-Muller decoding.
In Proceedings of the IEEE Semiannual Vehicular Technology
Conference, Fall 2002. To appear.

[5] G. Forney. Convolutional codes II: Maximum likelihood de-
coding. Inform. Control, 25:222–266, 1974.

[6] G. D. Forney. The Viterbi algorithm.Proceedings of the IEEE,
61:268–278, 1973.

[7] J. A. Heller and I. M. Jacobs. Viterbi decoding for satellite and
space communication.IEEE Transactions on Communications
Technology, pages 835–848, October 1971.

[8] Phil Karn. KA9Q Viterbi decoder V3.0.2,
viterbi-3.0.2.tar.gz. http://people.qualcomm.

com/karn/code/fec/, October 1999.

[9] Phil Karn. SIMD-assisted convolutional (Viterbi) de-
coders,simd-viterbi-2.0.3.tar.gz. http://people.

qualcomm.com/karn/code/fec/, February 2002.

[10] Donald E. Knuth.Fundamental Algorithms, volume 1 ofThe
Art of Computer Programming. Addison-Wesley, 2nd edition,
1973.

[11] K. Paterson and A. Jones. Efficient decoding algorithms for
generalised Reed-Muller codes. Technical report, Hewlett-
Packard Labs, November 1998.

[12] Bob Pearson. Complementary code keying made simple, ap-
plication note 9850, May 2000.http://www.intersil.
com/data/an/an9/an9850/an9850.pdf.

[13] R. van Nee. OFDM codes for peak-to-average power reduction
and error correction. InProc. IEEE Globecom ’96, London,
England, pages 740–744, November 1996.

[14] A. Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm.IEEE Trans. In-
form. Theory, IT-13:260–269, April 1967.

[15] S. Wicker. Error Control Systems for Digital Communication
and Storage. Prentice-Hall, Englewood Cliffs, NJ, 1995.

